Skip to content

Usage instructions

The following instructions show how to build and test the cubinterpp header library in a python environment.

Prerequisites

Refer to installation prerequisites.

Single header library

The easiest way to use cubinterpp in your project is to use the single header library.

Starting with release v0.8.0 each release comes with the single header library as asset. Alternatively, you can build the single header library yourself with (assuming python3 is already installed):

python3 create_single_header.py \
          --entry include/cubinterpp.hpp \
          --output ./build/cubinterpp_header.hpp \
          --license LICENSE

Since mdspan is not yet supported in the standard library you also need to get its corresponding single header library from the mdspan repository.

After putting both cubinterpp_header.hpp and mdspan.hpp into you include directory, you can use cubinterpp in your project by just adding it to the includes in your codebase:

#include "cubinterpp_header.hpp"

Build from source

To build the header library for usage in Python, it's recommended to use cmake. An appropriate cmake configuration is provided in the main CMakeLists.txt. Prior to compilation, the required external libraries are downloaded automatically using the cmake FetchContent module. Prior to building, make sure cmake is installed and configured with a C++ compiler like e.g. gcc. In order to create the python module, the development python library is also required.

In order to do so on a Debian based system, install cmake, gcc, g++ and python3.11-dev (change the python version depending on your configuration):

sudo apt install cmake gcc g++ python3.11-dev

Set the appropriate environment variables (it's recommended to add these lines to e.g. your .bashrc):

export CC=/usr/bin/gcc
export CXX=/usr/bin/g++

Then create the build directory, configure and build using:

mkdir build
cmake ..
make

This should build and automatically copy the library file cubic_spline.*.so into the cubinterpp directory.

Testing

This library comes with severals tests. To run all tests, first build and then run (while remaining in the build directory):

ctest -V

Interpolating and plotting the results

A python program is provided to compare the three interpolation types. Data preparation and visualization is done in python with mlpyqtgraph.

In order to run the python program, it's recommended to install uv and issue:

uv run cubinterpp 

This should install all required python dependencies automatically and run the python program that does the interpolation and plotting, resulting in the comparison plot shown at the top of this document.

Higher interpolation dimensions

By default, the library offers linear interpolation classes up to three dimensions with std::vector input types. If you'd like to implement higher dimensions, it's recommended to inherit from the N-dimensional interpolation class for a given dimension. For example, for three dimensional linear interpolation this could look like:

#include "linear_interp.hpp"

template <typename T>
class LinearInterp3D : public LinearInterpND<T, 3> {
    using Vector = std::vector<T>;
    using Vector3 = cip::VectorN<T, 3>;
public:
    explicit LinearInterp3D(const Vector &x, const Vector &y, const Vector &z, const Vector3 &f)
    : LinearInterpND<T, 3>(f, x, y, z)
    {}

    ~LinearInterp3D() { }
};

Note the counter-intuitive order of the constructor argument in LinearInterpND, due to the requirement that a parameter pack always needs to come last. This can be corrected in the inheriting classes constructor. Here, it's also possible to use different input types, which might differ per application.